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Abstract
The in-plane optical conductivity of high-Tc cuprates in the superconducting
(SC) and normal states is studied on the basis of the slave-boson mean-field
approach to the 2D t–t ′–J model and the antiferromagnetic spin fluctuation
correction in the framework of the renormalized random-phase approximation.
The mid-infrared contribution to the conductivity in the normal state and the
peak/dip/hump feature of the spectra in the SC state are reproduced, and are
shown to be caused by coupling to spin fluctuations, in particular by coupling
to the resonance mode of the spin fluctuations.

1. Introduction

Far-infrared spectroscopy of high-Tc superconductors has provided much valuable information
about low-energy electronic excitations [1–7]. The in-plane optical conductivity σ1(ω, T ) is
believed to provide a sensitive probe for detecting the dynamic properties of the carriers in the
CuO2 plane. It has been shown [3, 4] that the spectra in the normal state have a Drude-like
contribution at very low frequencies which is followed by an anomalous strong mid-infrared
(MIR) contribution. In the superconducting (SC) state, the spectrum around 500 cm−1 is lower
than for the normal state, but when the frequency exceeds about 1000 cm−1 it recovers and
almost coincides with that for the normal state [7]. In the early days, this unusual behaviour
was explained on the basis of a phenomenological two-component model which consists
of a ‘free-carrier’ Drude-like contribution at low frequencies and the MIR one associated
with ‘bound carriers’ [9]. An alternative one-component model in which the quasi-particle
scattering rate has the so-called ‘marginal-Fermi-liquid’ form has also been proposed [10].
Recently, theoretical calculations based on the scattering by spin fluctuations have been carried
out, in which a d-wave BCS model incorporating the spin fluctuations within a weak-coupling
Hubbard model picture [11] or in a phenomenological form has been adopted [12, 13].
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On the other hand, many anomalous features of high-Tc cuprates observed in other
measurements such as ARPES (angle-resolved photoemission spectroscopy) [14, 15] and
SIN (superconductor–insulator–normal) and SIS (superconductor–insulator–superconductor)
tunnelling spectroscopy [16] have suggested that conducting electrons in the SC state are
strongly coupled to collective excitations centred at Q = (π, π). It has been speculated
that these collective excitations may be the resonance mode observed in the inelastic neutron
scattering (INS) experiments [17–19]. Recently, Carbotte et al [8] have analysed the optical
properties of the copper oxides in detail. They found that the strength of coupling of the
charged quasiparticles to the spin resonance mode, which can be inferred from experiments,
is sufficient to account for the high SC transition temperatures, therefore providing strong
support for this suggestion.

The slave-boson mean-field approach to the two-dimensional (2D) t–t ′–J model and
the treatment of the antiferromagnetic (AF) fluctuations in the renormalized random-phase-
approximation (RPA) form have been able to reproduce many important features of the
resonance peak observed in INS experiments [21–23], and have been successfully used
to explain the peak/dip/hump structure observed in ARPES [22] and to account for the
condensation energy [24]. In this approach the dispersion of quasiparticles and the SC gap
for different hole doping concentrations are determined self-consistently; therefore a semi-
quantitative comparison with experiments is possible. In this paper we shall examine the in-
plane optical conductivity on the basis of this approach. Our results show that in the normal state
there is a MIR contribution that is very weakly dependent on frequency and temperature, while
a peak/dip/hump feature is found in the spectra of the SC state. We attribute the anomalous
structure of the latter to scattering off the spin resonance. To avoid the complication arising
from the pseudogap, which appears in the normal state of the underdoped cuprates below a
certain temperature T ∗ above Tc, we will confine our discussion about the normal state to the
optimally doped case. The pseudogap is beyond the scope of this paper.

The paper is organized as follows. Section 2 contains a detailed account of the model
and the computational approach. Results are presented and discussed in section 3. A short
summary is given in section 4.

2. Model and computation

We start with the 2D t–t ′–J model which reads

H = −
∑
〈i j〉,σ

tc†
iσ c jσ − h.c. −

∑
〈i j〉′,σ

t ′c†
iσ c jσ − h.c. + J

∑
〈i j〉

Si · S j (1)

where 〈i j〉 denotes the summation over nearest-neighbour (nn) bonds and 〈i j〉′ the next-
nearest-neighbour (nnn) bonds, Si = 1

2

∑
α,β c†

iασαβciβ , where σαβ is the Pauli spin matrix

and c†
iσ (ciσ ) is the electron creation (annihilation) operator at the i th site, which implicitly

excludes double occupancy on the same lattice site. In the slave-boson method, ci is expressed
as the combination of slave bosons bi carrying the charge and fermions fiσ representing the
spin, so we rewrite as follows: ciσ = b†

i fiσ . The local single-occupancy constraint leads
to b†

i bi +
∑

σ f †
iσ fiσ = 1, which will be satisfied at the mean-field level on average. In the

SC state, we consider the order parameters �i j = 〈 fi↑ f j↓ − fi↓ f j↑〉 = ±�0 with d-wave
symmetry and χi j = 〈 f †

i↑ f j↑ + f †
i↓ f j↓〉 = χ0, while bosons condense: bi → 〈bi 〉 = √

δ (δ is
the hole concentration). Using the Hartree–Fock–Bogoliubov decomposition [25], we obtain
the mean-field Hamiltonian Hm of equation (1):

Hm =
∑
kσ

εk f †
kσ fkσ −

∑
k

�k( f †
k↑ f †

−k↓ + h.c.) + 2N J ′(χ2
0 + �2

0) (2)
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where εk = −2(δt + J ′χ0)[cos(kx) + cos(ky)] − 4δt ′ cos(kx) cos(ky) − µ, �k =
2J ′�0[cos(kx) − cos(ky)], with J ′ = 3J/8. The values of the parameters in the t–t ′–J model
are given by t = 2J , t ′ = −0.45J , and J ≈ 130 meV, as used previously [21, 22]. The mean-
field parameters χ0, �0, and chemical potential µ for different doping (δ) and temperature
values are obtained from the following self-consistent equations derived by minimizing the
total free energy:

χ0 = − 1

2N

∑
k

γkεk

Ek
tanh

(
β Ek

2

)

1 = 1

N

∑
k

J ′ϕ2
k

Ek
tanh

(
β Ek

2

)

δ = 1

N

∑
k

εk

Ek
tanh

(
β Ek

2

)
(3)

where γk = cos(kx) + cos(ky), ϕk = cos(kx) − cos(ky), and Ek =
√

ε2
k + �2

k is the
quasiparticle excitation energy in the SC state. In the optimally doped region, the parameters
in the mean-field Hamiltonian for the normal state are obtained similarly, by simply enforcing
the SC gap �0 = 0 during the calculation. This extrapolation has been proved successful in a
previous work that calculated the SC condensation energy [24].

The inclusion of the AF spin fluctuations can be done by perturbing around the mean-field
Hamiltonian; i.e., we write the Hamiltonian as H = Hm + H ′, and treat H ′ as a perturbation. In
principle, all fluctuations should be included. However, different selections of subset diagrams
may result in different kinds of fluctuation. We calculate the AF spin fluctuations in the RPA
form which includes a series of ring diagrams, as done previously [21, 22]. The resulting spin
susceptibility is given by

χ(q, ω) = χ0(q, ω)

1 + αJ (q)χ0(q, ω)
(4)

in which J (q) = J [cos(kx) + cos(ky)] and χ0(q, ω) is the bare spin susceptibility which is
calculated from the fermionic bubbles representing particle–hole (p–h) excitations and can
be obtained by the analytic continuation (iω → ω + iη; η is a positive infinitesimal) of the
Matsubara Green function χ0(q, iω):

χ0(q, iω) = − 1

4N

∑
k

{(
1 − εkεk+q + �k�k+q

Ek Ek+q

)

×
[

1 − f (Ek) − f (Ek+q)

iω − Ek − Ek+q
− 1 − f (Ek) − f (Ek+q )

iω + Ek + Ek+q

]

−
(

1 +
εkεk+q + �k�k+q

Ek Ek+q

)

×
[

f (Ek) − f (Ek+q )

iω − Ek + Ek+q
− f (Ek) − f (Ek+q)

iω + Ek − Ek+q

]}
(5)

where f (Ek) is the Fermi distribution function.
In the usual RPA approach, the parameter α in equation (4) should be 1. However, α = 1

will give rise to an AF instability at doping δ ≈ 0.22, which is much larger than δc ≈ 0.02
as observed in experiments. In the renormalized RPA approach that Brinckmann and Lee
discussed clearly in [21], α is taken as a phenomenological parameter which is determined by
reducing the AF instability to be at δ = 0.02. This gives α = 0.34, which is the only adjusted
parameter in our paper.
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The fermionic self-energy is obtained from the lowest-order contribution of the scattering
of fermions by spin fluctuations. In the Matsubara–Nambu representation [26], the self-energy
is in the form of a 2 × 2 matrix which is expressed as follows:

�̂(k, iωn) = −3

2

1

β N

∑
q

∑
iωm

J 2(q)χ(q, iωm )σ̂3Ĝ(k − q, iωn − iωm)σ̂3. (6)

The fermionic Green function is calculated via usual Dyson equations, Ĝ−1(k, ω) =
Ĝ−1

0 (k, ω) − �̂(k, ω), where Ĝ0(k, ω) is the unperturbed Green function and is given by

Ĝ0(k, ω) = iωσ̂0 + εkσ̂3 + �k σ̂1

(iω)2 − ε2
k − �2

k

(7)

with σ̂i being the Pauli matrices. The Kubo formula is used to calculate the in-plane optical
conductivity within the BCS framework. The real part of the conductivity, labelled as σ1(ω),
is given by [27]

σ1(ω) = − Im �xx (ω)

ω
, (8)

with

Im �xx (ω) =
∑

k

πe2

N

∫
dω′ [vx(k)]2 Tr[ Â(k, ω + ω′) Â(k, ω′)][ f (ω + ω′) − f (ω′)] (9)

where the spectral function Â(k, ω) = −(1/π) Im Ĝ(k, ω) and vx is the x-component of the
fermionic quasiparticle group velocity.

In the following numerical calculations, the summation of k over the 2D Brillouin
zone (BZ) is performed by dividing the BZ into a conventional rectangular mesh containing
256 × 256 k-points. One can see that the computational task is huge if we directly calculate the
self-energy from equation (6). Fortunately, equation (6) is in the form of a discrete convolution
where the convolution theorem is valid, so we can adopt a fast Fourier transform algorithm [28]
to calculate the self-energy, which saves a lot of time and improves the efficiency greatly.

3. Results and discussion

The ω-dependence of the in-plane optical conductivity σ1(ω) at optimal doping δ = 0.16 is
shown in figure 1 for different temperatures. We first discuss the conductivity in the normal
state, which is shown as the short-dashed line (T = 0.2 J ≈ 300 K), the dashed–dotted line
(T = 0.133 J ≈ 200 K), and the dotted line (T = 0.066 J ≈ 100 K). The spectra have
a prominent Drude-like component at low frequencies followed by a MIR component. As
temperature decreases (still higher than Tc), the width of the low-frequency part shrinks and
the corresponding intensity goes up sharply. However, almost no change is found in the MIR
part of the spectra. This is in agreement with the spectra observed in experiments [3, 4, 7],
where the MIR contribution exhibits a weak temperature dependence. The most remarkable
difference between the spectra presented here and those of conventional metals is the existence
of the MIR component, which can be attributed to the coupling to spin fluctuations that show
up as a broad hump in the normal state around q ≈ (π, π) in INS experiments [17, 20].

When temperature is decreased to below Tc, a narrower residual Drude-like response
remains, but the spectra around 0.7 J are heavily suppressed compared to the normal-state
counterpart, as shown in figure 1. However, the spectra of the two states almost coincide when
the frequency exceeds 1.5 J . Thus, a dip forms between the Drude-like component and the
MIR component, and the whole spectrum has a peak/dip/hump structure which shares some
kind of similarity with the single-particle spectrum observed in ARPES [14, 15].
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Figure 1. The ω-dependence of the in-plane optical conductivity σ1(ω) at optimal doping δ = 0.16
for different temperatures. For comparison, we show in the inset the experimental results for an
optimally doped YBCO sample given by Puchkov et al [4].

To compare with experiments, we present one typical result of Puchkov et al for YBCO
single crystals [4] as shown in the inset of figure 1. Considering the shape of the spectra,
the agreement of our results with experimental data is quite good. We note that the YBCO
materials contain a CuO2 bilayer and a special CuO chain structure, which are not considered
here. However, the coincidence with corresponding experiments can also be found in other
families of high-Tc superconductors including the single-layered compound Tl2201 and bilayer
Bi2212 [4, 7], neither of which contains a CuO chain. Therefore, the rough shape of the spectra
may be an intrinsic property of the CuO2 plane. In addition, the maximum of the broad hump
in our results appears at about 1.25 J ≈ 1300 cm−1, which is also in reasonable agreement
with the experimental value ∼1000 cm−1. But the spectra (both in the normal and the SC
states) descend more rapidly than the experimental data. It is important to note that we do not
introduce more adjustable parameters and an empirical formula to fit the experimental data.
The values of the mean-field parameters χ0, �0, and µ are all determined self-consistently.
The only adjustable parameter is α which is chosen to be α = 0.34 based on the agreement of
the theoretical and experimental results on the AF instability [21]. The values of t, t ′ and J in
the t–t ′–J model have been used in previous calculations and have given good results for the
spin and charge responses [21–24].

For comparison, in the practical computation we have adopted three different damping
rates for the quasiparticles � (used during the procedure of analytic continuation), namely
0.02, 0.01, and 0.003 J . Our numerical results are found to be robust and reliable, since no
obvious difference in the spectra is found.

Now we turn to the origin of the peak/dip/hump structure in the in-plane optical conduc-
tivity. The spin excitation resonance mode is the prominent feature of the spin fluctuation
spectrum in the SC state observed by means of neutron scattering, and can be reproduced
theoretically via the renormalized RPA form of the spin susceptibility equation (4) [21–23].
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Figure 2. Schematic topological structure of the Fermi surface, represented by the thick solid curve.
The thin solid and dashed lines denote the threshold p–h excitations for different wavevectors (see
the text).

Because it appears around the AF wavevector Q = (π, π), the quasiparticle excitations with
transition momentum q ≈ Q will be most effectively affected by the spin resonance. These
involve the excitations from A to B, as shown schematically in figure 2, with the transition
energy �0 (the spin excitation resonance mode energy) which is determined from the peak
position of the spin susceptibility, as calculated using equation (4) [22, 23], and is found to be
smaller than the maximum of the d-wave gap. On the other hand, those excitations near the
diagonal direction fail to feel the effect of the spin resonance, due to the requirement of mo-
mentum conservation. In this case the transition energy approaches zero, because the SC gap
�k vanishes in this direction due to the dx2−y2 -wave symmetry. Thus the conductivity at very
low frequencies involves only those excitations from C to D, i.e., along the diagonal direction,
and these nodal quasiparticle excitations contribute to the low-energy Drude-like component
in the optical conductivity. When the frequency increases to the spin resonance frequency �0

or so, the coupling of quasiparticles to the spin resonance mode comes into effect and this
furnishes an additional scattering channel. Therefore, the spectra are suppressed. This is in
analogy with the case of the dip formation in the single-particle spectrum [22] and suggests
that the dip in the in-plane conductivity comes from the coupling to the spin resonance.

The ω-dependence of the in-plane optical conductivity σ1(ω) at T = 0.007 J ≈ 10 K
for different doping levels (δ = 0.065, 0.10, 0.16, and 0.20) is shown in figure 3. Though
the dip in the spectra is shallow, we can still see that it shifts to low frequencies when the
hole concentration is decreased. From both the experimental data [17] and the theoretical
calculations [22], we know that �0 also decreases with the decrease in hole concentration. This
doping dependence of the dip position is therefore consistent with the above explanation of its
formation. Finally, we note that the MIR spectra at high frequencies are almost independent
of the variation of hole concentration.

Though the agreement of the spectral lineshape with many experiments is quite good as
shown above, our calculations deviate much from the experimental data for single-layer LSCO
families [29]. The spin excitation resonant mode observed by means of neutron scattering in
other cuprates is, thus far, still unidentified in the LSCO family. However, it has just been
discovered that this resonant mode is present in Tl2Ba2CuO6+δ [30]. Tl2Ba2CuO6+δ is also
a single-layer compound and the lineshape of its optical conductivity [4, 7] agrees well with
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Figure 3. The ω-dependence of the in-plane optical conductivity σ1(ω) at temperature T =
0.007 J (10 K) for different doping levels δ = 0.065, 0.10, 0.16, and 0.20.

our above results. This is consistent with our above analysis based on the spin resonant
mode. Therefore there may be some peculiar factor in the LSCO family which determines this
anomaly and has not been considered in our calculation. Further experimental and theoretical
work is necessary.

Finally, we note that our calculation does not incorporate the scattering of quasiparticles by
impurities, which has been considered by other researchers [11, 13]. This is because optical
measurements are usually carried out on untwinned single-crystal samples of high quality
and the impurity scattering is small relative to the strong inelastic scattering from AF spin
fluctuations, and gives only a minor correction to the spectral lineshape. In addition, more
phenomenological parameters must be introduced during the theoretical treatment of impurity
scattering.

4. Summary

On the basis of the slave-boson mean-field approach to the 2D t–t ′–J model and taking into
consideration the AF spin fluctuations via the renormalized RPA approximation, we have
calculated the in-plane optical conductivity of high-Tc copper oxides in both the SC and
the normal states. For the normal state, our results exhibit a prominent MIR contribution
that is weakly dependent on frequency and temperature. For the SC state we reproduce the
peak/dip/hump structure in the spectra of the conductivity. These results are consistent with
experiments. It is shown that the dip in the conductivity in the SC state is caused by the
scattering of the charge quasiparticles off the spin resonance mode, which shares a common
origin with the dip in the single-particle spectrum observed by ARPES [22]. In the light of
the recent studies of the effect of the spin resonance on the condensation energy [24] and on
the spectra of angle-resolved photoemission and tunnelling in high-Tc cuprates [31], we think
that our results give additional support to the importance of the resonant spin excitation mode
in determining many physical properties of the SC state of high-Tc cuprates.
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